
Eur. Phys. J. A 12, 399–404 (2001) THE EUROPEAN
PHYSICAL JOURNAL A
c© Società Italiana di Fisica

Springer-Verlag 2001

Two-neutron elastic transfer 4He(6He, 4He)6He at E = 151 MeV

I.V. Krouglov1,2,a, M. Avrigeanu3, and W. von Oertzen1,4,b

1 Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, 14109 Berlin, Germany
2 St. Petersburg State University, Nuclear Physics Department, Uljanovskaja str. 1, 198904 St. Petersburg, Russia
3 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Romania
4 Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany

Received: 29 October 2001
Communicated by W.F. Henning

Abstract. Using the framework of the coupled reaction channels (CRC) the elastic scattering and the
elastic transfer in the system 6He + 4He measured at E = 151 MeV have been analysed. It is shown that
the structure observed in the backward range of the angular distributions is influenced by the interference of
the elastic 2n-transfer with a two-step process passing through the 2+ excitation in 6He. The two-neutron
transfer mechanism is studied in the microscopic approach and it is found that for the ground-state
transition the one step dominates by a factor 10 over the two-step mechanism at this energy.

PACS. 24.10.Eq Coupled-channel and distorted-wave models – 25.70.Bc Elastic and quasielastic scattering
– 25.60.Bx Elastic scattering

1 Introduction

The structure of 6He has been studied with various
reactions recently [1,2]. The unusual features of this
nucleus are related to the fact that the odd isotope 5He
is unbound and that the 6He0+ bound ground state
is formed by a three-body state also referred to as a
“Borromean” nucleus. The two-neutron transfer has
recently been measured [2–4], and the elastic 2n-transfer
process in the system α + 6He has been reported by two
different groups [5,6].

We present here the results on a coupled reaction
channels analysis of the two-neutron transfer at high en-
ergy of Elab = 151 MeV observed [2,5] in the reaction
4He(6He,4He)6He. The backward rise in the angular distri-
bution of the elastic channel evidenced in the experimen-
tal data is the signature of the well-known elastic-transfer
process [7]. At this high incident energy the main processes
are the break-up, the one-neutron transfer, the inelastic
excitation of the 2+ state (and of the continuum) and fi-
nally, the 2n-transfer, which appears as a backward rise
in the elastic-scattering distribution. In the previous stud-
ies of this system, the predominance of the “di-neutron”
transfer has been established [2] by using two types of
wave functions. Corresponding experiments at high en-
ergy for the scattering of 6Li + 4He [8] contain virtually
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the same information as the data discussed here, namely
a very strong backward rise due to the deuteron exchange.

The present analysis will concentrate on the elastic-
transfer process and possible higher-order coupling as-
pects [9,10] and less on the details of the two-neutron
wave functions.

With modern computer codes the coupled reaction
channel (CRC) approach [11] can be used with a mini-
mum of assumptions for the elastic two-neutron transfer
as in the case of the 4He(6He,4He)6He reaction. In a recent
study of the 12C(6He,4He)14C reaction at low energies, we
obtained a very good description of the data using known
parameters and known single (and two)-neutron spectro-
scopic factors [12]. Also the absolute values are very well
reproduced considering the additional factor (1.54)2 for
the spectroscopic factors recently proposed for the two-
neutrons in 6He in refs. [13,14].

For the wave functions of 5,6He and the structural as-
pects of the sequential transfer we will rely on these pre-
vious studies [12], in addition the di-neutron(“cluster”)
approximation for the transitions via the inelastic chan-
nel will be considered. At high energy the excitation of
the 2+ state is expected to be very strong. This will give
rise to the “indirect” contribution [9] in the 2n-transfer
via this state and there will be a superposition of two am-
plitudes contributing to the ground state, as depicted in
fig. 1.

The generalised double-folded potential for the real
potential has been used, with the density-dependent
BDM3Y-Paris effective nucleon-nucleon (NN) interaction
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Fig. 1. Coupling diagram for one- and two-neutron transfer
and inelastic excitation in the system 6He + 4He. The one- and
two-step processes in the two-neutron transfer, the transitions
via the ground state and the 6He2+ state are indicated; the two-
step route to the latter is not shown. The “indirect” routes via
the inelastic excitation of the 2+ state in the sequential mode
are shown by dash-dotted line (the latter only in one direction).
The thresholds indicate the binding of the 2n-cluster and of the
neutron in the 6He2+ state.

[15–17], and the imaginary part from Bachelier et al. [8]
has been chosen in the optical potential in the incident
and exit channels in the CRC calculations. Thus, we have
good conditions to make a quantitative comparison of the
CRC calculations with the experimental data.

2 CRC approach for the elastic transfer

The main aim of the present study is to test the dynami-
cal properties of the 6He-induced elastic and inelastic two-
neutron transfer reactions. The elastic transfer has a Q-
value equal to zero, which favours dynamically the transfer
of the neutrons as a “cluster”. The sequential transfer of
the two neutrons proceeds via the 5He + 5He channel as an
intermediate step. The negative Q-value for breaking the
neutron pair and the weak binding of the neutron in the
intermediate step makes the two-step process less prob-
able [18–20] at this high energy. We will further include
the reaction proceeding via the first excited 2+ state of
6He at 1.80 MeV which is 0.975 MeV above the 2-neutron
threshold (but just a few keV below the 5He + neutron
break-up channel. These energies are depicted in fig. 1.

The coupling scheme is illustrated in fig. 1. The cou-
pling routes discussed in the work calculations are the fol-
lowing: a) elastic two-neutron one-step (or cluster) trans-
fer without inelastic excitation, solid line; b) cluster 2n-
transfer with the “indirect” route via the 2+ state, dash-
dotted line, and thin line, the wavy line indicating inelastic
excitation. The results of these calculation are shown in
fig. 2. Then we have used c), the “microscopic” approach
for the one and two-step neutron transfer (thick line, and
thick dashed line). In order not to make the figure too
complicated we have omitted the coupling routes via the
2+ state in the backward direction from the exit channel,
however, no direct coupling between the 2+ states has
been considered.

Fig. 2. Angular distributions of the elastic scattering of 6He
+ 4He at Elab = 151 MeV from ref. [2] and results of cal-
culations. The curves show the following calculations: a) thin
curve: elastic transfer with the 2n-cluster approximation as
ref. [2], b) dot-dashed curve: elastic transfer with the indirect
route and the “wrong” sign of the deformation parameter and
c) thick curve: elastic scattering with elastic transfer including
the indirect route via the 2+ state of 6He (see text).

The resonance for n + 4He in 5He(p3/2) is at an en-
ergy of 0.89 MeV with a width of 600 keV. However, in
our calculation we use, as previously [12], the quasi-bound
approximation for this state and the 2+ state, because
the differences to the exact treatment were rather small.
For the microscopic description the one and two-neutron
transfer channels are included, although the 5He + 5He
channel cannot be observed. The one-step and two-step
two-neutron transfer routes via the 6He2+ state are also
drawn, as well as the 2n-cluster transfer route via the
6He2+ state. The sequential transfer proceeds in both
cases via 5He channel, and we show it in fig. 1 with the
relevant Q-values.

The elastic transfer of nucleons has been studied re-
peatedly in the last 25 years [7], a more recent example,
with a rather complicated coupling scheme is the system
37Cl + 36S, where the full coupling effects of elastic and in-
elastic proton transfer have been studied [21]. The impor-
tant aspect of the elastic transfer is the coherent addition
of elastic potential scattering and the transfer amplitudes
written as [7]

σelast(θ)∝[fpot(θ) + f2n(π − θ)]2 , (1)

which gives rise to a characteristic interference pattern
in the angular region, where the two amplitudes are of
equal magnitude, due to the cross term which will appear
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in eq. (1). But, according to [9], an additional amplitude
can come into play with the second-order route via the
6He2+ state, which will interfere with the normal transfer
amplitude. The inelastic excitation has to be calculated,
however, in higher order, we use the collective form fac-
tor with the di-neutron cluster transfer for this route. The
complete microscopic approach will be given in later publi-
cation. If we use the microscopic description for the inelas-
tic scattering and the transfer, there are big contributions
in higher order from the back coupling into the entrance
channel from the 1n-transfer channel. In this case many
iterations are necessary in order to obtain convergence for
the final result.

2.1 Wave functions

In the present work apart from the cluster approximation,
the microscopic approach for the two-neutron transfer has
been tested using the “standard” approach [12], where the
transfer process is treated in the coupled reaction chan-
nel scheme [11] and the single-neutron and two-neutron
transfer are treated in a consistent way.

The matrix elements for the one-nucleon transfer
are defined in the usual way by the overlap of the
single-particle wave functions in the first (initial) step
〈Φ4He|Φ5He〉 = φi

1n for 5He overlap with 4He, and the
overlap 〈Φ5He|Φ6He〉 = φf

1n for the final step. The over-
lap of 〈Φ4He|Φ6He〉 = φ2n consists of the product of the
two mentioned single-particle structures, which are the
same for the microscopic one-step 2n- and for the sequen-
tial 1n transfer. The spectroscopic amplitudes are well
known and are given in table 1. Here the two-nucleon
overlap is directly determined by the spectroscopic ampli-
tudes (CFPs) for the p3/2 strength of the individual steps
taken from refs. [13,14]. This treatment of two-nucleon
transfer (without the indirect route) produces three co-
herent components, the sequential single-nucleon transfer-
amplitude, the one-step amplitude for two neutrons and
the non-orthogonality term. The coherent sum gives the
differential cross-section.

Table 1. Spectroscopic amplitudes for overlaps of one- and
two-neutron wave functions for 5,6He states.

Overlap (p3/2) (p1/2) Reference
〈
4He|5He

〉
0+

1.1 0.00 this work
0.85 −0.07 ref. [14]

〈
5He|6He

〉
0+

−1.4 0.00 this work
−1.4 0.00 ref. [14]

〈
4He|6He

〉
0+

(p3/2)
2 (p1/2)

2

−1.6 to 1.8 0.00 this work
1.6 0.00 ref. [14]

〈
4He|6He

〉
2+

(p3/2)
2 (p1/2)

2

1.6 0.0

Table 2. Parameters (WS-shape) of the imaginary optical po-
tentials for the calculations shown in figs. 2 and 3, with the
(DFM) double-folding BDM3Y real potential.

Potentials W rw aw

6He + 4He (MeV) (fm) (fm)

2n-cluster/and 8.0 1.21 0.95

2 + exit channel 45.0 0.7 0.40

DFM-microscopic(a) 8.0 1.21 0.95

(a) One + two steps.

A particular feature is that the ground state of the
5He nucleus is a p3/2 resonance at 0.89 MeV in the 4He
system, with a width of 600 keV, thus no data can be
made available for the 1n-transfer cross-section in these
studies. For the 6He0+ state the maximal spectroscopic
factor has been used and only one configuration has been
considered, (p3/2)2, also for the 6He2+ state.

There is still an ambiguity with the Q-value of the
intermediate step: we use the correct Q-value of the
5He channel, but a quasi-bound approximation has been
used for the 5He ground state with a binding energy of
0.01 MeV as well as for the 6He2+ state. This approxima-
tion seems to be rather good in view of the dominance
of the � = 1 centrifugal barrier of the p3/2 configurations,
which produces a tail of the wave function rather inde-
pendent of these binding energies, however, we use the
correct asymptotic Q-values in the dynamical CRC calcu-
lation. For the two-neutron wave function of the ground
state the asymptotic binding energy of 0.98 MeV has been
taken.

For the CCBA-coupling scheme the “collective” form
factor for the 2+ state allows an exact solution of the
coupling equations in inelastic scattering and multi-step
Born approximation for the transfer. The strength of the
quadrupole coupling in this case has been taken from the
literature [22].

In the analysis we have to choose the potential for the
quasi-bound state in 5He and the bound state in the 5He-
6He channel. The relevant values for the central potential
with Woods-Saxon shape are given in the table 3 (as com-
pared to ref. [12] we have omitted the spin-orbit poten-
tials, because they produce only small effects not relevant
for this study).

2.2 Microscopic real potentials

An important ingredient for the calculations is the opti-
cal potential for elastic scattering. We have used a mi-
croscopic approach for the real part of the optical po-
tential describing the 6He + α scattering in the double
folding model. We calculated the folding potential with
the density- and energy-dependent BDM3Y1-Paris effec-
tive nucleon-nucleon (NN)-interaction [15–17] and with
the RIKEN [23] density distributions for the helium iso-
topes given in the framework of the harmonic-oscillator
basis. Since the details of the folding procedure are given
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Fig. 3. Calculations of the elastic scattering with elastic trans-
fer for 6He + 4He as in fig. 2 at 151 MeV. The curves show
the full calculations with two-step (sequential) and one-step
transfer contributions for the two neutrons with parameters
according to tables 1-2.

elsewhere [16], only the basic points are resumed in the
following.

The energy- and density-dependent BDM3Y1 effective
NN-interaction, as given in refs. [15–17], is used:

vD(EX)(ρ,E, r) = g(E) F (ρ) vD(EX)(r) , (2)

here the direct (D) and exchange (EX) components of the
M3Y effective NN-interaction are based on the results of
the G-matrix calculations using the Paris NN-potential
vD(EX)(r), which is parametrised in terms of Yukawa func-
tions. The energy-dependent factor is g(E) = 1–0.003E,
and the density-dependent function F (ρ) for the BDM3Y1
effective interaction is given by F (ρ) = C(1 − αρ), con-
sidered as the best choice for the real folded potentials
involving α-particles and other light ions [15,17].

For the calculation of the knock-on exchange term
of the folded potential the approximation of Campi and
Bouyssy [24] has been used. Therefore we preserved the
first term of the expansion given by Negele-Vautherin [25]
for the realistic density-matrix expression but replaced
the Fermi momentum by the average relative momenta
[24] as a function of the density distribution ρ(r) and
of the kinetic-energy density τ(r) for each participant in
the interaction. Specifically for light nuclei the modified
Thomas-Fermi approximation of Krivine-Treiner [26] has
been considered for the kinetic-energy density [27].

Furthemore, the frozen-density approximation (which
corresponds to the local density approach [16,17] in
Hartree-Fock calculations) is used for the overlap den-

Table 3. Binding potentials for He-neutron bound states.

V r a

(MeV) (fm) (fm)

5He + n −49.0 1.25 0.82
4He + n −53.9 1.25 0.82
4He + 2n −58.5 1.20 0.90
4He + 2n(2+) −71.5 1.20 0.90

sity, which enters with its explicit form into the density-
dependent factor F(ρ) (i.e. ρ being taken as the sum of
the densities of the two colliding nuclei at the midpoint of
the intra-nuclear separation).

In the data analysis we adopted the imaginary compo-
nent of a phenomenological optical potential for 4He + 6Li
scattering from Bachelier et al. [8]. In the process of the
analysis, we have found (as well as the authors of ref. [2])
that the imaginary part is relatively weak for this high
energy. Variations of the imaginary part have shown that
for stronger absorption strong diffraction structures are
observed in the forward and backward part of the angular
distribution, in contradiction with the data. We mention
that the same (almost identical!) angular distributions are
observed in the case of 4He + 6Li scattering and the anal-
ysis of ref. [28] indicates also that the potential has be-
come rather transparent at these energies. In both cases
the data for the 2n- or (np)-transfer show a pronounced
dip in the out-most angles. Also from our experience the
description of these structures is not obtained with any
reasonable change in the imaginary potentials, and thus
in both cases [2,28] the authors fail to reproduce prop-
erly the 2n-transfer part of the angular distributions. We
will show that this structure is naturally reproduced if the
indirect route, the excitation of the 2+ state is included.
The final result needs a deformation parameter for the
6He(2+) state with a negative sign, and the fit can be fine
tuned with the imaginary potential for the exit channel,
the imaginary potential has to be changed to describe the
larger absorption in the transfer process (the values are
given in table 2).

3 Results of the calculation

3.1 Two-neutron transfer via inelastic excitation of the
6He2+ state

The inelastic scattering to the (2+) state in 6He at
1.80 MeV is expected to be quite strong. In addition
some authors [29] are concerned with the excitation of
unbound states (and of the continuum) in 6He. Both ex-
citations can be phenomenologically incorporated by an
adequate choice of the imaginary potential. The major-
ity of the calculations in the cited refs. [2,6] have been
done it this way. The 6He2+ state has been included in
our calculation by introducing the collective form factor
and a transition strength for the Coulomb interaction of
B(E2) = 3.2 e2fm4, as cited by Aumann et al. [22]. This
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value has been used to calculate the deformation length δ2.
Because of the very different radial shapes of the Coulomb,
real and imaginary parts of the potentials, their corre-
sponding deformation lengths δ2 = β2R do vary in the
range of 0.8 to 1.8 fm. The center-of-mass motion of the di-
neutron is described by a wave function with 2N +L = 2,
so we have N = 1 and L = 0 for the ground state and
N = 0 and L = 2 for the excited 2+ state.

In the calculations we needed some fine tuning of the
imaginary potential the parameters of which are given in
table 2. The result of the calculations is shown in fig. 2.
We note that similar to the calculations of ref. [2] the di-
rect 2n-transfer (curve with β2 = 0 without coupling to
the 2+ state) gives the correct absolute value of the cross-
section, the calculation failes, however, to reproduce the
maximum at θc.m. = 140◦. The same failure is observed
in the analysis of the 6Li + 4He scattering at the same en-
ergy in ref. [28]. The inclusion of the indirect route with a
deformation parameter β2 gives a clear signal for the ori-
gin of this structure. In fact the interference of the direct
and indirect routes produces a pronounced structure, the
negative sign of β2 gives the correct description. These in-
terference phenomena are discussed for the 2n-transfer to
the exited states in ref. [9].

The present description of the interference of the elas-
tic transfer with its indirect route via the 2+ state of
6He would also be obtained for the elastic transfer in the
6Li + 4He case [8,28] with the inclusion of the excitation
from the ground state 1+ to the 3+ state at 2.183 MeV
in 6Li, which is the spin-isospin analog state of the 2+

state of 6He, for this a E2 excitation with a B(E2)-value
of 21.8 e2fm4 is cited in ref. [30] (this gives a deformation
length of approximately 2.7 fm). The observed structure
in the backward rise in these data [8], was thus not re-
produced in the calculations without the indirect route of
ref. [28].

A final comment on the parameters of the calculation:
the important ingredient in the interference phenomenon
is the amplitude (and its sign) for the 2+ excitation in
6He, which is actually an unbound state. We have treated
it for the transfer as a bound state in the 2n-cluster ap-
proximation, however, we have chosen a strong imaginary
part for the 2+ channel (see table 2) in order to have a
strong absorption to this channel. In the collective excita-
tion of the 2+ state, complex coupling has been applied,
where this part of the potential also counts.

3.2 One- and two-step neutron transfer

As mentioned before the microscopic approach for the
transfer of two neutrons contains three terms, the one-
step, the sequential transfer and the non-orthogonality
term. In addition in the present case the 2+ state in 6He
in the microscopic basis gives rise to higher-order transi-
tions, but with an inelastic transition preceding the men-
tioned processes. This fully microscopic approach will be
discussed elsewhere.

We present here calculations for the 2n-transfer with-
out the “indirect” route in the microscopic basis with the

parameters of the wave functions as given in tables 1 and
3, in order to illustrate the relative importance of the pre-
viously mentioned two contributions. In fig. 3 we show the
result of the CRC calculations for the individual contri-
butions and for their sum for the population of the (0+)
ground state in 6He. We notice a dominance of the one-
step 2-neutron transfer contribution by one order of mag-
nitude, and there is a destructive interference between the
one- and two-step amplitudes. This observation is in accor-
dance with the expectation that the 1n-transfer reactions
between weakly bound states decreases with incident en-
ergy, because of the poor momentum overlap as discussed
in refs. [18,19]. This decrease of the cross-section becomes
even more conspicuous for two-step processes, namely for
2n-transfer and charge exchange reactions like (12C,12N),
as discussed in ref. [20]. In contrast, the results of the
present calculations for the 2-neutron transfer to the ex-
cited 2+ state have shown, that there the sequential trans-
fer dominates by a factor 100 and more, and that the one-
step amplitude introduces also a destructive interference
of the two amplitudes.

In general we notice that the sequential process may be
still of importance, implying that the “di-neutron” struc-
ture is an effective description.

We have also made calculations with the inclusion for
the “indirect routes” and the microscopic treatment of the
2n-transfer. These results will be discussed together with
an analysis [31] of the low-energy data of ref. [6], where a
very pronounced interference of the elastic scattering and
the 2n-transfer is observed over the whole angular range.

4 Discussion and conclusions

In this work we have shown that the 2n-transfer plays a
dominant role in the elastic scattering of 6He on 4He. Us-
ing the microscopic approach we have obtained a satisfac-
tory description of the absolute value of the two-neutron
elastic transfer. The various spectroscopic amplitudes used
in the present analysis are known from previous studies.
For the real part of the optical potential we have chosen a
parameter-free double-folding potential without renormal-
isation. Calculations for the elastic 2n-transfer between
the ground states using the 2n-cluster approach or the
microscopic desciption of the two neutrons are found to
reproduce well the absolute values of cross-sections ob-
served as the backward rise in the angular distributions
of the elastic scattering. These calculations fail, however,
to reproduce the pronounced structure observed in the
data at the largest angles (the same problem occurred
in the analysis of the 4He on 6Li scattering of refs. [8,
28]). The discrepancy is removed by introducing the 2n-
transfer via the inelastic excitation of the (2+) state of 6He
(indirect route). The interference of the direct 2n-transfer
with the indirect route causes the mentioned additional
interference structure, and reproduces the correct posi-
tion of the minimum only with a deformation parameter
of the (2+) state with a negative sign. Such interference
phenomena are actually well known from the two-nucleon
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transfers to excited states studied some time ago, an ac-
count of these previous studies can be found in reviews of
R. Asciutto and E. Seglie [9] or of Tamura et al. [32]. A
fully microscopic analysis of the 6He + 4He scattering in
the CRC framework including the data at low energy is
prepration [31].
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